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Abstract

Nonconvex quadratic programming (QP) is an NP-hard problem that optimizes a general
quadratic function over linear constraints. This paper introduces a new global optimization
algorithm for this problem, which combines two ideas from the literature—finite branching
based on the first-order KKT conditions and polyhedral-semidefinite relaxations of completely
positive (or copositive) programs. Through a series of computational experiments comparing
the new algorithm with existing codes on a diverse set of test instances, we demonstrate that
the new algorithm is an attractive method for globally solving nonconvex QP.
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1 Introduction

We consider the problem of optimizing a general quadratic function subject to linear and bound
constraints:

min
1

2
xTHx+ fTx (QP)

s.t. Ax ≤ b
Aeq x = beq

l ≤ x ≤ u,

where x ∈ <n is the variable and H ∈ <n×n, f ∈ <n, A ∈ <m×n, b ∈ <m, Aeq ∈ <meq×n, beq ∈ <meq ,
l ∈ <n, and u ∈ <n are the data. Without loss of generality, H is symmetric, and we assume H is
not positive semidefinite, which implies generally that (QP) is nonconvex and NP-hard (Pardalos
and Vavasis, 1991). Components of the vectors l and u are allowed to be infinite, but we assume
the feasible set of (QP) is bounded. We also assume without loss of generality that (QP) has an
interior point and Aeq has full row rank.

Problem (QP) arises in many application areas, such as inventory theory (Lootsma and Pearson,
1970), scheduling (Skutella, 2001), and free boundary problems (Lin and Cryer, 1985). Moré and
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Toraldo (1989) mention several applications of the box-constrained case, namely, when the only
constraints are l ≤ x ≤ u, and make a connection with the linear complementarity problem.
Extensions of (QP) that incorporate additional nonlinearities—for example, variants of the trust-
region subproblem within trust-region methods (Celis et al., 1985) and subproblems in robust
linear regression (Nguyen and Welsch, 2010)—are relevant in practice. In this sense, (QP) is also
an important substructure occurring in other optimization problems.

Because (QP) is nonconvex, a local minimum may not be a global minimum. Many methods
for (QP) employ nonlinear programming techniques such as active-set or interior-point methods
to calculate critical points that satisfy the Karush-Kuhn-Tucker (KKT) conditions with a good
objective value. Gould and Toint (2002) survey numerous such methods, and the function quadprog

in Matlab’s Optimization Toolbox (MathWorks, 2010) is a widely available implementation. Various
techniques are also available to find a global solution of (QP), and Pardalos (1991) surveys several
of these global optimization methods. A recent method, which is closely related to this paper, is
by Burer and Vandenbussche (2008). Excellent off-the-shelf software packages, such as BARON
(Sahinidis, 1996) and Couenne (Belotti, 2010), are also available for the solution of (QP).

In this paper, we propose a new method for globally optimizing (QP). Our approach follows
that of Burer and Vandenbussche (2008) by employing a finite branch-and-bound (B&B) scheme, in
which branching is based on the first-order KKT conditions and polyhedral-semidefinite relaxations
are solved at each node of the B&B tree. However, our method differs from theirs in that our
relaxations have a different structure and are solved with a different algorithm that exploits this
structure.

In particular, our relaxations are derived from completely positive (CP) and doubly nonnegative
(DNN) programs as specified by Burer (2009, 2010). (Completely positive programs are also known
as copositive programs.) We connect (QP) with CP programs by reformulating (QP) as a quadratic
program with linear equality, nonnegativity, and complementarity constraints. Burer (2009) shows
that such problems can be formulated as CP programs, which are convex programs that optimize
a linear function over the convex cone of completely positive matrices subject to linear constraints.
Since even CP programs are NP-hard, however, one must relax them in practice. Relaxing a
CP program in a natural way yields a DNN program, whose distinguishing feature is its matrix
variable, which is both positive semidefinite and entrywise nonnegative. Furthermore, Burer (2010)
develops a specialized algorithm for these DNN programs and demonstrates that similar quality
bounds can be obtained in less time compared with the type of relaxations employed by Burer and
Vandenbussche (2008).

The main goal of this paper is to demonstrate that merging finite KKT-based B&B with com-
pletely positive programming yields an attractive method for globally solving (QP). To show this,
we conduct computational experiments on 243 diverse instances of (QP) and compare our method
with the method of Burer and Vandenbussche (2008) and with the general-purpose global solver
Couenne. The results demonstrate that our algorithm solves (QP) faster than the one by Burer and
Vandenbussche on most of the test instances. In addition, our algorithm performs well compared
to Couenne. For example, on nearly all instances that took Couenne more than 1,000 seconds to
solve, our algorithm requires about the same or less time. In addition, Couenne runs out of time
or memory more often than our algorithm does on the test instances.

A secondary goal of this paper is to provide a convenient global optimization solver for (QP) that
can be used by practitioners and researchers alike. Our implementation is based in Matlab, uses
the same syntax as the local optimization routine quadprog, and requires only an external linear
programming solver. In contrast, the method by Burer and Vandenbussche (2008) requires a convex
quadratic programming solver. In Section 5, we illustrate the convenience of our implementation
by using it as a subroutine to solve a more general nonlinear program motivated by trust-region



methods.
The paper is organized as follows. In Section 2, we provide background on the finite KKT-based

B&B method of Burer and Vandenbussche (2008) and the approach of Burer (2009, 2010) involving
CP and DNN programs. In Section 3, we describe our reformulation of (QP) as a CP program
using the KKT conditions and discuss the important technical issue of bounding the dual variables
in the CP formulation. Section 4 combines the ingredients from Sections 2–3 to describe our B&B
implementation and conduct the computational experiments. Section 5 details the trust-region
example. In Section 6, we conclude the paper with a few brief remarks on possible ways to improve
our approach.

Notation and terminology. We let e ∈ <n represent the vector of all ones. For an index i
and vector x, we use xi to denote the ith entry of x. For an index set F ⊆ {1, . . . , n}, we define
xF ∈ <|F | as the vector composed of entries of x that are indexed by F . The notation X � 0 means
that the matrix X is symmetric positive semidefinite, and diag(X) denotes the main diagonal of X
as a vector. The inner product of two matrices A,B ∈ <n×n is defined as A •B := trace(ATB); ◦
represents the Hadamard product, that is, the componentwise product.

2 Background

In this section, we briefly review the finite B&B method (Burer and Vandenbussche, 2008) and the
CP and DNN techniques (Burer, 2009, 2010) mentioned in the introduction.

2.1 The finite branch-and-bound method

The finite B&B method proposed by Burer and Vandenbussche (2008) works by first incorporating
into (QP) its first-order KKT conditions and then enforcing the first-order KKT conditions through
branching. The primary advantage of such an approach is that the B&B tree is finite, unlike other
global optimization approaches based on spatial branching. A secondary advantage is that this
approach allows one to develop stronger relaxations of (QP), for example, ones that involve the
KKT conditions.

For the sake of simplicity, we discuss finite branching with respect to a simplified version of
(QP) that has no equality constraints and no explicit lower and upper bounds; in other words, the
feasible set is simply {x : Ax ≤ b}.

Specifically, as illustrated by the following program, the authors start with the quadratic pro-
gram (1)–(2) and incorporate its first-order KKT conditions (3)–(4):

min
1

2
xTHx+ fTx (1)

s.t. Ax ≤ b (2)

Hx+ f +ATγ = 0, γ ≥ 0 (3)

(b−Ax)iγi = 0 ∀ i = 1, . . . ,m. (4)

Then, at each node in the B&B tree, the authors introduce index sets F (b−Ax), F γ ⊆ {1, . . . ,m}
and replace (4) by

(b−Ax)i = 0 ∀ i ∈ F (b−Ax)

γi = 0 ∀ i ∈ F γ . (5)

Note that (5) enforces the complementarity conditions (b−Ax)iγi = 0 only for those i ∈ F (b−Ax) ∪
F γ . At the root node, the authors set F (b−Ax) = F γ = ∅. Then the idea is to branch by adding



indices to F (b−Ax) or F γ , progressively enforcing more complementarities at nodes deeper in the
tree. In particular, branching on a node involves selecting an index i ∈ {1, . . . ,m}\(F (b−Ax) ∪ F γ)
and creating two children by adding i to F (b−Ax) for one child and adding i to F γ for the other.
Branching maintains F (b−Ax) ∩ F γ = ∅ always, and a leaf node is characterized by F (b−Ax) ∪ F γ =
{1, . . . ,m}, which enforces (4) fully.

At any node, note that (1)–(3) and (5) still constitute a nonconvex problem because of the
quadratic objective. Thus, a convex relaxation is constructed and solved to compute a lower bound
for that node. There are many choices for the convex relaxations, and a particular SDP relaxation
is constructed by Burer and Vandenbussche (2008). With that SDP relaxation, the authors show
that any leaf node can be pruned and thus their B&B scheme is correct and finite. We mention
that for our method, presented in Section 3, the same types of results can be shown ensuring the
finiteness and correctness of our algorithm also.

2.2 Doubly nonnegative programs

Consider a quadratic program having linear equality, nonnegativity, and complementarity con-
straints:

min
1

2
x̃T H̃x̃+ f̃T x̃ (NQP)

s.t. Ãx̃ = b̃, x̃ ≥ 0

x̃ix̃j = 0 ∀ (i, j) ∈ E, (6)

where E is a fixed set of pairs. Burer (2009) has shown (NQP) is equivalent to a completely positive
program

min
1

2
H̃ • X̃ + f̃T x̃ (CPP)

s.t. Ãx̃ = b̃, diag(ÃX̃ÃT ) = b̃ ◦ b̃
X̃ij = 0 ∀ (i, j) ∈ E(

1 x̃T

x̃ X̃

)
∈ C,

where C is the completely positive cone

C :=
{
X ∈ Sn | ∃ integer k,B ∈ <n×k, Bij ≥ 0, X = BBT

}
.

(CPP) naturally has the following SDP relaxation:

min
1

2
H̃ • X̃ + f̃T x̃ (DNP)

s.t. Ãx̃ = b̃, diag(ÃX̃ÃT ) = b̃ ◦ b̃
X̃ij = 0 ∀ (i, j) ∈ E(

1 x̃T

x̃ X̃

)
� 0, (x̃, X̃) ≥ 0,

where the semidefinite matrix is called doubly nonnegative because both its eigenvalues and entries
are nonnegative. The major contribution of Burer (2010) is an algorithm to solve (DNP) efficiently,
yet approximately. The algorithm also produces dual bounds, which makes it appropriate for use



in a B&B algorithm. The implementation of the algorithm requires an additional input, namely,
finite upper bounds on the variable x̃. For example, assuming (NQP) is bounded, such bounds can
be obtained in a preprocessing phase by solving several linear programming (LP) problems. Note
that these upper bounds may not appear explicitly in (DNP).

Related to this issue of boundedness, in Section 3.2 we discuss how to bound the dual variables
arising from the KKT approach of Section 2.1, which will ultimately become components of x̃ in
(NQP). A similar issue was faced by Burer and Vandenbussche (2008), and we will discuss our
approach for dealing with it. Otherwise, we will not review the details of the algorithm for (DNP),
since we can treat it as an available subroutine and simply embed it in the finite B&B method.

3 Reformulation and Bounding

In this section, we first discuss the steps required to reformulate (QP) as (NQP). In short, (NQP)
serves as a kind of standard form, and the reformulation involves techniques such as introducing
the KKT system of (QP), representing inequalities as equalities, and shifting and scaling variables.
While the transformation is not particularly complicated, it warrants discussion because it is critical
to our approach. After the reformulation, we show how to bound the dual variables that arise when
formulating the KKT system (see also Section 2.2).

We caution the reader that, in order to simplify the notation, we sometimes abuse it. For
example, the same variable x may be used before and after a shifting or scaling.

3.1 Reformulation

There are several ways of reformulating (QP) as (NQP). Our fundamental approach is to incor-
porate the first-order KKT conditions of (QP) into its formulation. This gives rise to the comple-
mentarity conditions in (NQP) that will become the basis of branching as discussed in Section 2.1.
This approach also allows us to construct potentially stronger semidefinite relaxations.

Since we employ the finite B&B framework, it is also desirable to keep the number of comple-
mentarity conditions minimal in order to have a small B&B tree. In fact, we would like the number
of complementarities in (NQP) to be exactly the same as the number naturally occurring in the
KKT system of (QP). For example, suppose xj is a free variable in (QP) with (lj , uj) = (−∞,+∞),
which is nevertheless bounded by assumption. To put (QP) in the form of (NQP), one could split
xj into the difference of nonnegative variables before constructing the KKT system, but doing so
would introduce two more complementarities compared with first constructing the KKT system
and then splitting xj . There is an even better way to handle such xj , as we describe next.

To describe our explicit transformation—the one that has been implemented exactly in our
code—we group the variables xj of (QP) into categories based on the following index sets:

L := {j : −∞ < lj , uj = +∞} lower bounds only

U := {j : −∞ = lj , uj < +∞} upper bounds only

B := {j : −∞ < lj , uj < +∞} both lower and upper bounds

F := {j : −∞ = lj , uj = +∞} free.

Using the transformation xj → uj − xj , variables xj with j ∈ U can easily be transformed into
variables with j ∈ L. In other words, we may assume U = ∅. In a similar manner, we may also



assume lj = 0 for all j ∈ L and (lj , uj) = (0, 1) for all j ∈ B. Then (QP) becomes

min
1

2
xTHx+ fTx (QP′)

s.t. Ax ≤ b
Aeq x = beq

0 ≤ xL, 0 ≤ xB ≤ e, xF free.

To form the KKT conditions, we introduce multipliers γ ≥ 0, y free, λL ≥ 0, λB ≥ 0, and
ρB ≥ 0 for the respective inequality constraints of (QP′). These give the Lagrangian

1

2
xTHx+ fTx− γT (b−Ax)− yT (beq −Aeqx)− λTLxL − λTBxB − ρTB(e− xB)

with optimality conditions

Hx+ f +ATγ +ATeqy − λL − λB + ρB = 0

Ax ≤ b, Aeqx = beq, 0 ≤ xL, 0 ≤ xB ≤ e, xF free

γ ≥ 0, y free, λL ≥ 0, λB ≥ 0, ρB ≥ 0

(b−Ax) ◦ γ = 0, xL ◦ λL = 0, xB ◦ λB = 0, (e− xB) ◦ ρB = 0, (7)

where, in the first equation, the vectors λL, λB, and ρB are understood to have zeros in their indices
that do not belong to L, B, and B, respectively. Note we also have the implied complementarity

λB ◦ ρB = 0, (8)

which is valid because xi ≥ 0 and 1− xi ≥ 0 for all i ∈ B cannot be active at the same time. We
also enforce (8) when branching in the B&B scheme; see Section 4.1 for details.

Since (NQP) allows only equality constraints, we introduce slack variables (s, wB) to turn
inequalities into equalities and arrive at the following:

Hx+ f +ATγ +ATeqy − λL − λB + ρB = 0 (9)

Ax+ s = b, Aeqx = beq, xB + wB = e, (xL, xB, s, wB) ≥ 0, xF free (10)

y free, (γ, λL, λB, ρB) ≥ 0

s ◦ γ = 0, xL ◦ λL = 0, xB ◦ λB = 0, wB ◦ ρB = 0, λB ◦ ρB = 0. (11)

This format fits (NQP) except that y and xF are free. Recall our assumption that the feasible set
of (QP) is bounded, and so bounds on xF can be calculated by solving some LPs; more details are
given in Section 3.2. We also postpone the discussion of how to bound y to Section 3.2.

Suppose now that y and xF have available lower bounds. Again, we can shift the variables such
that their lower bounds are zeros. We thus obtain

Hx+ f +ATγ +ATeqy − λL − λB + ρB = r (12)

Ax+ s = b, Aeqx = beq, xB + wB = e, (x, s, wB) ≥ 0

(γ, y, λL, λB, ρB) ≥ 0

s ◦ γ = 0, xL ◦ λL = 0, xB ◦ λB = 0, wB ◦ ρB = 0, λB ◦ ρB = 0,

where r is a constant vector resulting from the shift.
Now we are ready to reformulate (QP′) as (NQP) using (12). We stack all the primal variables

(x, s, wB) and the dual multipliers (γ, y, λL, λB, ρB) together to form the new variable x̃ ≥ 0. It
is easy to formulate appropriate (Ã, b̃) such that Ãx̃ = b̃ models all the linear equalities in (12),
and E is constructed to encapsulate all the complementarity conditions in (12) via the constraints
x̃ix̃j = 0 for all (i, j) ∈ E.



3.2 Finite bounds on dual variables

As mentioned in Section 2.2, the algorithm we have chosen for solving (DNP) requires finite upper
bounds on the nonnegative variables x̃j . Thus we need explicit finite lower and upper bounds on
all the original primal and dual variables, which can easily be translated into upper bounds on the
x̃j ’s.

First, we show how to compute bounds on x through LP-based preprocessing. By assumption,
the primal feasible set is bounded even though l and u may have nonfinite components. Then, if a
lower (upper) bound is needed for xj , we solve the following LP:

min (max) {xj : Ax ≤ b, Aeqx = beq, l ≤ x ≤ u} .

Next we discuss the dual variables. We start by proving that they are indeed bounded. In order
to bound y, the KKT conditions alone are not sufficient. We further need

xTHx+ fTx+ bTγ + bTeqy + eTρB = 0, (13)

which is obtained from (9)–(11). Indeed, multiplying xT on both sides of (9) yields

xTHx+ xT f + xTATγ + xTATeqy − xTLλL − xTBλB + xTBρB = 0,

and then (10) and (11) simplify the above equality to (13). Note that xTBρB simplifies to eTρB
since wTBρB = 0 and thus

xTBρB = (xB + wB)TρB = eTρB.

To simplify the proof, we assume both x and its slack s are bounded below by 0 and above by
e; indeed, we can first compute bounds for x and s and then shift and scale. We then define

Â :=

(
A I
Aeq 0

)
, b̂ :=

(
b
beq

)
, x̂ :=

(
x
s

)
,

so that the feasible set can be stated as

P := {x̂ ∈ <n+m : Âx̂ = b̂, 0 ≤ x̂ ≤ e}.

We let ŷ be the dual multiplier for Âx̂ = b̂ and introduce λ̂ ≥ 0 and ρ̂ ≥ 0 as the dual multipliers
for 0 ≤ x̂ ≤ e. Note that the dual multipliers in (12) are simply subvectors of (ŷ, λ̂, ρ̂), and so the
boundedness of (ŷ, λ̂, ρ̂) will imply that of the dual multipliers.

It is helpful to restate the first equation of (12) in terms of (ŷ, λ̂, ρ̂) as follows:

Ĥx̂+ f̂ + ÂT ŷ − λ̂+ ρ̂ = 0, (14)

where Ĥ :=

(
H 0
0 0

)
, f̂ :=

(
f
0

)
. Similarly, the equivalent version of (13) is

x̂T Ĥx̂+ f̂T x̂+ b̂T ŷ + eT ρ̂ = 0. (15)

Note that (15) is nonlinear, and so we first linearize it by applying the reformulation-linearization
(RLT) technique of Sherali and Adams (1999). In particular, we introduce a new matrix variable
X̂ to replace x̂x̂T , namely, X̂ij = x̂ix̂j componentwise, which allows us to write (15) as

Ĥ • X̂ + f̂T x̂+ b̂T ŷ + eT ρ̂ = 0. (16)



RLT also produces the following valid inequalities:

0 ≤ X̂i,j ≤ min{x̂i, x̂j}, ∀ 1 ≤ i ≤ j ≤ n+m (17)

1− x̂i − x̂j + X̂i,j ≥ 0, ∀ 1 ≤ i ≤ j ≤ n+m, (18)

which further tighten the relationship between X̂ and x̂. In light of (17) and (18), the boundedness
of x̂ implies that of X̂, and the following set is bounded:

P̂ :=
{

(x̂, X̂) : x̂ ∈ P, (17), (18)
}
.

In other words, the recession cone P̂ 0 of P̂ is trivial, that is, P̂ 0 = {0}.
We are then ready to prove that (ŷ, λ̂, ρ̂) is bounded. We prove this by demonstrating that the

recession cone of the set defined collectively by the primal, dual variables and their associated valid
inequalities is empty. The recession cone of P , (14), and (16)–(18) is as follows:

R0 :=


(4x̂,4X̂) ≥ 0
4ŷ free

(4λ̂,4ρ̂) ≥ 0

:

(4x̂,4X̂) ∈ P̂ 0

Ĥ4x̂+AT4ŷ −4λ̂+4ρ̂ = 0

Ĥ • 4X̂ + f̂T4x̂+ b̂T4ŷ + eT4ρ̂ = 0

 .

Since P̂ 0 = {0}, R0 simplifies to

R0 =


(4x̂,4X̂) = (0, 0)

(4λ̂,4ρ̂) ≥ 0
4ŷ free

:
AT4ŷ −4λ̂+4ρ̂ = 0

b̂T4ŷ + eT4ρ̂ = 0

 .

Now we define

R :=

{
(4λ̂,4ρ̂) ≥ 0
4ŷ free

:
ÂT4ŷ −4λ̂+4ρ̂ = 0

b̂T4ŷ + eT4ρ̂ = 0

}
.

R is the projection of the recession cone of R0 onto the variables (4ŷ,4λ̂,4ρ̂). Hence, it suffices
to show that R = {0}. We do so by exploiting the assumptions that (QP) has an interior point
and Aeq has full row rank, which imply that P contains an interior point and Â has full row rank.

Proposition 3.1. R = {0}, and hence the dual variables (ŷ, λ̂, ρ̂) are bounded.

Proof. Consider the LP max{0 : x̂ ∈ P} and its dual

min

{
b̂T∆ŷ + eT∆ρ̂ :

ÂT∆ŷ −∆λ̂+ ∆ρ̂ = 0

(∆λ̂,∆ρ̂) ≥ 0, ∆ŷ free

}
.

Strong duality ensures b̂T∆ŷ + eT∆ρ̂ = 0 at optimality, and so the dual optimal solution set is
precisely R.

Now let (∆ŷ∗,∆λ̂∗,∆λ̂∗) ∈ R be any optimal solution of the dual, and let x̂0 be an interior point
of P , which is obviously an optimal solution to the primal problem since the objective function
is f(x̂) := 0. Complementary slackness implies (∆λ̂∗,∆ρ̂∗) = (0, 0) since 0 < x̂0 < e. Then the
dual linear constraint simplifies to ÂT∆ŷ∗ = 0. Since Â has full row rank, ∆ŷ∗ = 0. Hence,
(∆ŷ∗,∆λ̂∗,∆λ̂∗) = (0, 0, 0), which demonstrates R = {0}.



Now that we know the dual variables (ŷ, λ̂, ρ̂) are bounded, to actually compute bounds for
them, we again solve some LPs. The constraints of the LPs are exactly the valid constraints we
derived based on optimality conditions and RLT techniques. For example, to compute the lower
and upper bounds for the kth component of ŷ, we solve the following pair of LPs:

min /max { ŷk : x̂ ∈ P, (14), (16)-(18) } . (19)

We compute the upper bounds for λ̂ and ρ̂ using the same linear programs but with modified
objective functions. These bounds must be computed during preprocessing and reformulation
because they are required as input later by the algorithm that solves the relaxation in the form of
(DNP) at each node of the B&B scheme.

4 Computational Results

In this section, we describe our implementation of the finite B&B algorithm to globally solve (QP),
and we compare its performance with that of two other methods on a diverse set of test problems.
The code has been made publicly available at http://dollar.biz.uiowa.edu/~sburer under the
keyword QuadprogBB.

4.1 Implementation details

The implementation consists of two main components: (1) the reformulation of (QP) into (NQP)
described in Section 3.1, including the calculation of bounds, and (2) the B&B scheme described
in Section 2.1.

The reformulation includes a preprocessing phase in which we remove fixed variables and check
whether the assumptions of the method are satisfied, in other words, whether (QP) has an interior
point and Aeq has full row rank. After preprocessing, we recast (QP) as (QP′) by flipping some
variables and shifting and scaling others. Then we formulate the first-order KKT conditions of
(QP′) as detailed in Section 3.1. With the KKT system available, we compute bounds for each
primal and dual variable by solving LPs, for example, ones of the form (19) for the dual variables.
These LPs are the most time-consuming part of the reformulation.1 We used warm-start to speed up
the solution of LPs. Specifically, we save the row and column basis information from the solution of
the previous LP, and use the basis information to warm start the next LP solve. The last step of the
reformulation puts the problem into the form (NQP) and scales each of the nonnegative variables
in (NQP) to have an implicit upper bound of 1, which is done because we found it improved the
numerical precision of the overall algorithm. Also, it facilitates our branching rule, as described
below.

The B&B algorithm, as with all such algorithms, involves four types of calculations: upper
bounds, lower bounds, fathoming, and branching. At each node of the tree, we apply a nonlinear
programming method to obtain a local solution of (NQP) without the complementarity condition
(6), which provides a currently best global upper bound (GUB). In our implementation, we use
the quadprog function in Matlab’s Optimization Toolbox to solve the QP. Quadprog finds a locally
optimal solutions to QPs in a fast and reliable way. At any given node, this calculation is initialized
with the value of x̃ from the node’s relaxation, which increases the diversity of the search for a good

1We also experimented with bounding the sum of several nonnegative variables at a time (say,
∑

k yk). The idea
was that this would still produce bounds—albeit looser ones—for individual variables but would require the solution
of fewer LPs. However, we found that the looser bounds resulted in much longer time spent in the subsequent B&B
calculations. So we decided to stick with calculating separate bounds for each variable.



GUB throughout the tree. For lower bounds, at each node we solve the DNN relaxation (DNP)
of (NQP) tailored only to respect the complementarities enforced at that node. For example, we
solve the root relaxation with no complementarity conditions enforced. At any particular node, if
the lower bound obtained by solving the relaxation is within a prespecified tolerance of GUB, then
that node is fathomed.

If a node cannot be fathomed, then branching involves the enforcement of the complementarity
conditions by setting variables to 0 as discussed in Section 2.1. In our implementation, we branch
on the following complementarities from (12):

s ◦ γ = 0

xL ◦ λL = 0

xB ◦ λB = 0

wB ◦ ρB = 0.

A violated complementarity condition, say sjγj > 0, is selected and sjγj = 0 is enforced in the
two children nodes, where one node enforces sj = 0 and the other node enforces γj = 0. Note that
we do not branch on the implied complementarity (8). However, we maintain (8) when we create
the children nodes in the B&B tree. Specifically, if the complementarity to branch on is xjλj = 0,
j ∈ B, we will enforce ρj = 0 in the node xj = 0; similarly, if we branch on wjρj = 0, j ∈ B, we
will enforce λj = 0 in the node wj = 0. In both cases, we maintain the implied complementarity
λjρj = 0.

More details of the B&B algorithm are as follows:

• As mentioned in Section 2.2, we solve the relaxations (DNP) using the specialized decom-
position technique proposed by Burer (2010), which is efficient and always provides a valid
lower bound on the original QP. In particular, the relaxation would be expensive to solve by
interior-point methods.

• When selecting the next active node to solve, we choose the one that has the lowest lower
bound.

• We use a relative optimality tolerance for fathoming. For a given tolerance ε, a node with
lower bound vlb is fathomed if (GUB− vlb)/max{|GUB|, 1} < ε. In our implementation, we
set ε = 10−6.

• When choosing the complementarities to branch on, we employ a maximum violation ap-
proach. Given a solution x̃, we select the index (i, j), where x̃ix̃j is maximum among all
violated complementarities. We point out that the products x̃ix̃j are properly scaled since
every component of x̃ has been scaled in [0, 1].

All calculations have been implemented in Matlab (version 7.8.0.347, R2009a). We used CPLEX
12.2 for solving the LPs during preprocessing via CPLEX’s Matlab interface. In particular, this
interface made it easy to warm-start the LPs as discussed above.

4.2 Experiments

For the computational study, we collected a total of 243 instances. All instances satisfied the
assumptions of boundedness and interiority and had H 6� 0. These instances are of one of four
types:



• BoxQP. We selected 90 instances having m = meq = 0 and (l, u) = (0, e). These so-called
BoxQP instances were created and solved in a recent pair of papers (Burer and Vandenbussche,
2009; Vandenbussche and Nemhauser, 2005).

• Globallib. Globallib (Globallib) instances are standard benchmark instances in global opti-
mization. We included 83 instances that satisfy our assumptions for (QP).

• CUTEr. We included 6 instances from the CUTEr test problem set (Gould et al., 2003).
The CUTEr test problem set is a rich nonlinear programming problem test set. However,
most QP instances in the set are convex, that is, they have H � 0. We found only 9 instances
that satisfy our selection criteria, i.e., H 6� 0 and bounded feasible set with interior, but we
excluded 3 either because of size or numerical difficulties encountered by each of the methods.

• RandQP. We generated 64 instances of QPs with varying size and sparsity using a code (with
slight modifications) written by Sven Leyffer for generating random mixed-integer quadratic
programming instances. All instances have both inequality and equality constraints. Each
element in the data matrices is a random number in a certain range. The bounds for the
variables are (l, u) = (0, e).

We summarize the key statistics of these instances in Table 1, including the number of instances,
the number of variables, the number of constraints, and the density of H. For the sake of brevity,
we present only ranges.

Type # Instances n m+meq H Density

BoxQP 90 [20, 100] [0, 0] [0.19, 0.99]
Globallib 83 [2, 100] [1, 52] [0.01, 1]
CUTEr 6 [4, 12] [0, 13] [0.08, 1]
RandQP 64 [20, 50] [14, 35] [0.23, 1]

Table 1: Statistics of the test instances.

From now on, we refer to our method as Quadprogbb. We compare Quadprogbb with the
method of Burer and Vandenbussche (2008), referred to as BurVan. The BurVan code is not
publicly available, but since the second author was a co-author of the BurVan code, the code was
available to us. BurVan uses CPLEX 9.1, and while we tried to convert it to use CPLEX 12.2 as
Quadprogbb does, we were unsuccessful due to CPLEX run-time errors that we could not fix.

Recall that both methods are based on finite branching via the KKT system, but the key
differences between Quadprogbb and BurVan are the structure of the relaxations to be solved at
each node and the algorithm used to solve them. Specifically, the relaxations employed by BurVan
include the first-order KKT conditions but do not lift the dual variables into a semidefinite matrix as
a means to strengthen the relaxation and explicitly model the complementarity conditions.2 On the
other hand, the SDP relaxation utilized in Quadprogbb is derived from the completely positive
representation of QP, which incorporates the dual variables and complementarity conditions in
a DNN matrix. For solving the relaxations, BurVan employs an algorithm that is designed to
handle Lovász-Schrijver-style SDP relaxations of quadratic programs (Burer and Vandenbussche,
2006; Lovász and Schrijver, 1991), while the algorithm we employ is specifically tailored for (DNP).

2In fact, Burer and Vandenbussche (2008) do investigate relaxations that lift the dual variables into a semidefinite
matrix, but the authors conclude that the increased size of the relaxations causes overall larger B&B times. So we
employ their simpler relaxation in order to have the best overall times for their method.



At the implementation level, another difference between Quadprogbb and BurVan is that
BurVan has been designed to only solve instances of (QP) with no equality constraints, that is,
with meq = 0. Moreover, BurVan requires an interior point just as we do, so one cannot simply
split equalities into inequalities and solve the resulting instance with BurVan. While certainly
BurVan could be adapted to solve instances with meq > 0, we do not make such modifications to
their algorithm here and test it only on instances with meq = 0.

We also compare with Couenne 0.3 (Belotti, 2010), a state-of-the-art open source global opti-
mization solver.3 Couenne differs from our methods in three major ways. First, Couenne is a general
mixed-integer nonlinear solver and thus is not specialized for solving (QP). Second, Couenne utilizes
a reformulation-based spatial B&B technique that implements linearization, branching, heuristics
to find feasible solutions, and bound reduction (Belotti et al., 2009). It is well known that spatial
B&B can produce an infinite number of nodes; in comparison, our approach is a finite B&B method.
Third, Couenne solves LP relaxations at the nodes, where we solve SDP relaxations. In particular,
the computational cost at each node is relatively cheap for Couenne compared with Quadprogbb.
The LP solver used by Couenne is Clp4.

All instances with meq = 0 are solved three times, once by each of the above methods. Since
BurVan cannot handle meq > 0, those instances with meq > 0 are solved by Quadprogbb and
Couenne only. Both Quadprogbb and BurVan use a relative tolerance of 10−6. We also set
Couenne’s allowable fraction gap option to be 10−6, which serves a similar purpose as the relative
tolerance in Quadprogbb. All computations were performed on a Pentium D running at 3.2 GHz
under the Linux operating system. Also a time limit of 10 hours and memory limit of 1 gigabyte
were enforced for each method on each instance.

To compare Quadprogbb and BurVan, we present log-log plots of the CPU times in Figure
1, where the left plot shows Globallib and CUTEr results and the right shows BoxQP results. Each
square represents one instance, and its xy-coordinates represent the CPU times of Quadprogbb
and BurVan, respectively. The diagonal y = x line is also plotted for reference. If a square is
located above the diagonal line, Quadprogbb solves that instance faster. A similar comparison
is made between Quadprogbb and Couenne in Figure 2, where all four types of instances are
solved. We group the results of Globallib, RandQP, and CUTEr instances together and plot them
in Figure 2(a) while separating the BoxQP results in Figure 2(b).

Figures 1 and 2 depict only instances that were solved by both methods, that is, instances on
which neither method ran out of time or memory, and also were nontrivial. Here we regard instances
as “nontrivial” if they require more than 10 seconds to solve by at least one of the three methods.
Table 2 summarizes those instances that ran out of time or memory. When a particular method
ran out of resources on an instance, we calculated the relative optimality gap at the moment of
termination, where the gap is defined as

GUB− zlb
max {1, |GUB|}

× 100%. (20)

GUB denotes the current global upper bound, and zlb represents the worst bound of all the remain-
ing active nodes. In the table, we report a method’s average relative optimality gap on a set of
nonsolved instances. We mention also that BurVan failed numerically on one Globallib instance.

We summarize our interpretations of Figures 1 and 2 and Table 2 as follows:

• On the Globallib and CUTEr instances, Quadprogbb performed better than BurVan.
In the left plot of Figure 1, more than two thirds of the instances are above the diagonal

3Specifically, we used Couenne stable version 0.3, revision:738, 03/07/2011. https://projects.coin-or.org/

Couenne, accessed 08/10/2011.
4Clp – Coin-Or Linear Programming. http://projects.coin-or.org/Clp/, accessed 08/10/2011.



100 101 102 103 104 105
100

101

102

103

104

105

Quadprogbb

Bu
rV
an

100 101 102 103 104 105
100

101

102

103

104

105

Quadprogbb

Bu
rV
an

(a) Globallib and CUTEr

100 101 102 103 104 105
100

101

102

103

104

105

Quadprogbb

Bu
rV
an

100 101 102 103 104 105
100

101

102

103

104

105

Quadprogbb

Bu
rV
an

(b) BoxQP

Figure 1: CPU times – Quadprogbb vs. BurVan

line. Several squares are located far above the diagonal line, indicating that Quadprogbb
performed better than BurVan on harder instances. From Table 2, Quadprogbb and
BurVan seem to have similar average optimality gaps on their failed Globallib instances.

• Quadprogbb outperforms BurVan on the BoxQP instances. This performance is clear
among instances that were solved by both methods (see Figure 1(b)) as well as on the failed
instances (see Table 2), where Quadprogbb ran out of resources less often and, even when
it did, had a better average optimality gap.

• For most Globallib, RandQP and CUTEr instances, Couenne outperforms Quadprogbb
as shown in Figure 2(a). We mention, however, that Quadprogbb performs better than
Couenne in closing the gaps on the failed instances. In particular, on the Globallib instances,
Quadprogbb only ran out of time on 1 instance (qp3), and the gap is 0.30%; the average gap
is 21.64% for Couenne; on the RandQP instances, the average gap is 9.81% for Quadprogbb,
while it is 35.72% for Couenne.

• For BoxQP instances, Quadprogbb significantly outperforms Couenne on instances solved
by both methods (see Figure 2(b)), and Couenne runs out of memory on the larger instances
leaving large optimality gaps (see Table 2). The high memory usage is due to the generation
and storage of a very large B&B tree. We attribute the performance differences mainly to the
relaxation differences: we use stronger SDP-based relaxations, while Couenne uses weaker LP
relaxations.

To compare all three methods and take into account failed instances, we also present their
performance profiles in Figure 3. A performance profile “for a solver is the (cumulative) distribution
function for. . . the ratio of the computing time of the solver versus the best time of all of the solvers”
over all instances (Dolan and Moré, 2002). Again we separate the instances into BoxQP instances,
Figure 3(b), and all other instances, Figure 3(a). Since BurVan does not apply to RandQP
instances, we do not include BurVan in Figure 3(a). We also exclude from the performance profiles
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Figure 2: CPU times – Quadprogbb vs. Couenne

the trivial instances, those instances that can be solved within 10 seconds by all the comparing
methods.

The performance profiles confirm the information presented in Figures 1–2 and Table 2. For
Globallib, RandQP and CUTEr instances, Couenne is faster than Quadprogbb on many of them
but could not solve as many instances as Quadprogbb. On BoxQP instances, Quadprogbb is
clearly the winner among all the three methods: not only it is the fastest, but also it solved most
of the problems.

The full details of all runs summarized in this section have been posted as an online appendix
at http://dollar.biz.uiowa.edu/~sburer under the keyword QuadprogBB.

5 Extension

We have implemented Quadprogbb in Matlab, and as such, it is convenient to use Quadprogbb
directly or as a subroutine to solve more complex problems. In this subsection, we provide an
example to illustrate this approach.

Consider a problem of the form

min
x

{
1

2
xTQx+ cTx :

l ≤ x ≤ u
‖x‖2 ≤ ∆

}
, (21)

which arises, for example, as a subproblem when applying a trust-region method to minimize a
function f(y) subject to bound constraints: min{f(y) : l̃ ≤ y ≤ ũ}; see Nocedal and Wright (1999)
for an introduction to trust-region methods. The quadratic objective in (21) can be viewed as an
approximation of f(y) in the trust-region specified by ‖y − ȳ‖ ≤ ∆ around a given point ȳ by
defining x := y − ȳ, and the bounds l ≤ x ≤ u reflect the bounds of the feasible region. Problem
(21) would likely be solved approximately in trust-region implementations. Nevertheless, here we
are interested in solving it globally.

Using standard Lagrangian duality, one can show that the optimal value of (21) is equal to the
optimal value of



Type
# of # Out of # Out of Avg. Rel. Opt. Gap When

Instances Time Memory Out of Resources (%)

Quadprogbb
BoxQP 90 5 - 0.18
Globallib 83 1 - 0.30
RandQP 64 3 - 9.81

BurVan
BoxQP 90 12 - 0.87
Globallib 69 2 - 0.17

Couenne
BoxQP 90 - 66 60.96
Globallib 83 - 3 21.64
RandQP 64 - 16 35.72

Table 2: Comparison of the three methods on failed instances in terms of average optimality gap.
(The per instance time limit is 10 hours, and the memory limit is 1 GB.)

max
λ≥0

L(λ), L(λ) := min

{
1

2
xTQx+ cTx+ λ(xTx− 1) : l ≤ x ≤ u

}
, (22)

provided that a primal-dual solution (λ∗, x∗) to (22) satisfies λ∗(1 − (x∗)Tx∗) = 0. If not, then
λ∗(1− (x∗)Tx∗) is the associated duality gap. Note that for any given λ, one can evaluate L(λ) by
solving a box-constrained QP. In addition, L(λ) is a concave function in λ. These facts allow us to
solve (22) via bisection, for example.

We compare two ways to (approximately) solve (21): (1) with the bisection method for (22)
mentioned above, where Quadprogbb is used to evaluate L(λ), and (2) directly using Couenne.
We tested the two methods on 33 randomly generated instances. In particular, we use the 33
smallest BoxQP instances (20 ≤ n ≤ 40) for the objective data (Q, c). Additionally, we fix ∆ = 1
and generate each element of l uniformly between [−1, 0] and each element of u uniformly between
[0, 1].

Couenne could not solve any of these instances to within an acceptable tolerance within 1 hour,
and Couenne’s average relative optimality gap when out of resources was 1068%. Our method, on
the other hand, solved 31 of the 33 instances within an acceptable tolerance (the average relative
duality gap was 0.026%) within 1 hour. The average time for those 31 instances was 233 seconds.

As evidenced by Couenne’s performance, these random instances of (21) are not “easy,” and
the main goal of this experiment has been to demonstrate that it is possible to solve more general
problems using Quadprogbb in a convenient manner.

6 Conclusion

In this paper, we have shown how to globally solve the nonconvex quadratic programming problem
(QP) by combining ideas from finite KKT-based branching and completely positive (or copositive)
programming. The resultant algorithm often outperforms existing methods such as Couenne and
the one by Burer and Vandenbussche (2008). In addition, the algorithm can be conveniently
incorporated in other global optimization approaches.

The algorithm can be improved in several potential ways. Currently, the calculation of the
bounds on the dual variables takes a considerable amount of time, especially on large instances,
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and each bound is calculated separately by using a cold-start LP. Since the LPs for the different
bounds change only in the objective, one idea would be to warm-start the next LP with the optimal
basis of the current LP. Other ways to improve the algorithm include a better choice of branching
variable and enhancements to the subroutine, which solves the DNN relaxations at each node (and
which we have treated as a black box in this paper).
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